Filter Fiasco: Chapter 1

One of the circuits I have to design for my thesis is a bandpass filter.  Based off the specs I was presented with back in the early fall a filter with f_center = 100 MHz and Q = 250 was required; plus f_center needed to be tunable without changing Q. Not exactly the easiest design in the world but I studied up on a few topologies and settled on the Dual Amplifier Bandpass filter (pages 5.74 and 5.93).  According to Matlab and some hand calculations a 4th order filter was all I needed.

Figure 1: Dual Amplifier Bandpass Filter Schematic

Cut to Rev. 1 of the board and not a single aspect of the filter met spec or even remotely functioned as a bandpass filter.  Simply scoping the output showed my design self-oscillated around 50 MHz, fantastic.  Adjusting the potentiometer I put in place for R2 merely shifted the frequency of oscillation. No amount of debugging or rework could make the filter behave and according to one of my professors, my use pots in the first place was a recipe for disaster because of high parasitics along with poor overall performance at high frequencies. Another important thing to note was my use of a current feedback amplifier as opposed to a conventional voltage feedback amp  because of the higher bandwidth and slew rate they offer at high frequencies (foreshadowing, this will haunt me later on…).

After discussing things with my advisor we decided our first attempt was too ambitious and to spin a second revision of the board only this time with a few changes in the specs.  Mercifully, having a tunable center frequency was no longer required. It was determined that this feature wasn’t necessary in the prototype stage and that designing a new tuning method would take too much effort, thus preventing me from completing more important aspects of the project.  The center frequency was also dropped to 10 MHz which lowered Q down to 25 giving a much more achievable design.  Refining my Matlab simulations and hand calculations showed that I was actually incorrect on my first attempt (whoops) in regards to the number of stages.  With these new specs I would need a sixth order filter.  I decided to keep using a current feedback amplifier though I changed parts from Rev 1 and picked the THS3202 from TI.

With my first design having crashed and burned I turned to PSpice to see if I could get my design working in simulation before spending time in hardware chasing something that may prove to be a dead end.  Using  Intersil’s AN1613 (mentioned in my last post here) I downloaded the Spice model for the THS3202 from TI’s website, incorporated it into my schematic and began simulating.  I eventually got my filter working and meeting spec with the help of some compensation techniques from other app notes I discovered and got the results below in Figures 2 and 3.

BPF Mag Plot

Figure 2: Magnitude Plot of BPF

BPF Current Pulse Response

Figure 3: Vout of BPF to Current Pulse Input

From these figures everything appears to be in order, there’s a nice bandpass shape to the filter that met spec, a decent response to being hit with a 100 uA current pulse for 30 us, yadda yadda. All that should have been left was to slap it on a PCB and make sure it functioned right?  Stay tuned for Chapter 2 as our story continues…

Advertisements

One response to “Filter Fiasco: Chapter 1

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s