# Category Archives: Op Amps & Comparators

## Circuit Notes – Part 2

For my second Circuit Notes entry I decided to go with the Wien Bridge Oscillator. This time around the math wasn’t as intensive as it was for the Type III compensation with one exception. I had originally got the right answer in my derivation but had made a math error in the final step that I caught while writing in my Field Notes book. When I corrected the mistake I no longer knew how to make the math work out to give the correct output voltage at the resonant frequency. Wikipedia helped some by claiming RC was normalized to 1 but didn’t state why and I still don’t know. Is it just to make the math easier or is there a deeper reason for doing so?

Maybe college me could figure it out but present me is a tad rusty and so that last step is left as an exercise to the readers. I’ll keep digging and post an update if I find it or someone can correct me. Either way, the Evernote link can be found here and if you have any recommendations for a circuit you’d like to see analyzed feel free to send them my way.

References:

http://en.wikipedia.org/wiki/Wien_bridge_oscillator

http://www.electronics-tutorials.ws/oscillator/wien_bridge.html

## Circuit Notes – Part 1

The other week I impulse bought a bunch of Field Notes notebooks under the justification that they were a birthday gift to myself. I’ve been carrying a small pocket notebook on me for at least a year now so the regulator sized Field Notes won’t be stuffed in a drawer somewhere and forgotten but I also broke down and ordered a pack of the new limited release Arts & Sciences books too and needed a good use for them. They’re beautiful notebooks and I definitely recommend picking up a pack or two while you still can.

After brainstorming a bit I got the idea of using them to compose a circuit reference for myself. I seem to find my self deriving the same formulas over and over again at work so putting them all in one place where I can easily look back on them made the most sense. In order to keep this site from stagnating I figured I may as well also share them with whoever wants them. The Arts and Sciences books are the perfect size (7.5″ x 4.5″) and layout to fit a schematic on the blank left page and the derivation with some notes on the grid/lined right page. As an added bonus, writing out the circuits by hand with the idea of needing the info later will, ideally, help me to improve my normally atrocious penmanship as I have to take my time and focus on my writing.

Without further ado, here’s the Table of Contents and first entry into what I’m calling my Circuit Notes Series. I went with the transfer function for Type III compensation for switching regulators. Checkout the cool reference tables Field Notes threw on the inside cover too. Since this is just a reference I didn’t include all the math or in-depth details of how the circuit works, just some key notes to keep in mind. Think of this as an introduction to the circuit, not a be all end all treatise.

For anyone who would like to save a digital copy of these derivations I’ve also posted these pages to Evernote (here and here) where you can add them to your own notebooks and search them using OCR. Hopefully someone finds these notes as useful as I do! The next note I do will be on an RC oscillator circuit and after that who knows? Recommendations for circuits are welcome too as I’m always willing to learn some new topology.

References:

Click to access tb417.pdf

Click to access slva633.pdf

## Office Tomfoolery

So Monday at work I successfully pulled a prank on the designer for the part that is currently occupying the majority of my time. Concept, planning, and execution took about two weeks or so as I had to fit this little side project in around my real work obviously. Ever since the part’s inception this designer had been claiming it was perfectly designed and any errors were clearly the fault of me, the Applications Engineer. He wasn’t being mean or anything, this sort of good-natured rivalry is pretty common between the Apps and Design departments at work, but being that this is my first part as lead apps since starting a year ago meant I got some extra abuse. I figured it would be a good idea to go on the offensive and show everyone I wasn’t such an easy target. My boss, who’s been good friends with the designer for a long time now, thought it would be pretty funny and approved the gag, eager to see how it would play out.

The part is a single phase buck regulator meant for Vcore applications in laptops and ultrabooks. Vcore means that the regulator provides the main voltage rail to the processor, specifically an Intel one in this case as AMD and other processors have different power requirements. My goal was to somehow screw with the regulator, cause the output voltage to glitch and go out of spec, and convince the designer this was a silicon bug and not a board issue. After a little brain storming I came up with the following circuit which could be cobbled together out of various parts in the lab:

My Prank Circuit

Without diving down the rabbit hole that is regulator compensation, the comp pin of any buck converter is the output of an error amplifier which connects to a networks of passives going back to its negative terminal (the Feedback pin) and is part of the control loop used to keep the output voltage stable and well-regulated. My circuit would periodically drive this pin away from its steady state operating point. This disturbance would propagate through the chip and result in a noticeable glitch on the output voltage until the compensation loop could regain control and bring the output voltage back into spec.

As phase switches merrily along at the frequency and duty cycle set by the controller it gets divided down by R1 and R2. When phase is high the output of this voltage divider is enough to forward bias the diode and cause current to flow into C1 for a brief period before going low again. C1, which also connects to the positive input comparator U1, charges over time and when the voltage across the cap gets to be higher than the reference voltage present on the comparator’s negative input the comparator’s output swings to 5V. When U1’s output goes high two things happen. One, comp is driven away from steady state through R5 and two, the gate of M1 goes high which discharges C1 below the reference voltage starting the cycle over again.

Prank Circuit Sim Results (Click to view properly)

There really wasn’t much thought process behind the component values in my circuit; they were determined through trial and error in simulation. I didn’t care how often the circuit would trigger, only that it did and the disturbances it caused would appear on Vout. One of my only goals was to ensure that the resistor dividers wouldn’t draw enough current to interfere with the normal operation of the regulator and cause it not to start up. My second goal was to “break” the regulator just enough to cause concern but not enough to trigger any of various over voltage, current, or temperature protections built into the chip. This is why R5 had to be added; without it comp was driven too hard and the part simply shutdown (there’s no fun in that).

With the circuit idea solidified I headed into the lab to jury rig it into place underneath one of the eval boards. It was a messy hour after work one day, but I successfully placed each component and wired in the various signals and voltages from all across the board. Once things got going, there would be so many cables and probes attached to the board I knew it wouldn’t get turned over until I was ready to reveal what I’d done.

Holding my breath I powered up the board after making all the necessary modifications. Surprisingly enough it worked! I hadn’t made any disastrous mistakes when wiring it all up and the resulting waveforms basically match with my sims. All that was needed was some tweaking of R5 to find the right value and I was ready for action.

Cutting to Monday morning, I spent a little time taking scope captures of a good board and my doctored eval board. These were placed in a quick report which I shot off to my boss and the designer right after lunch. To add to the joke I took my clean scope caps using a part from an old rev of silicon and explained how the “bug” was only seen in the latest version of the chip. This caused the initial spark of concern in the designer as we’re currently waiting on a new rev of the chip to arrive from the fab and it was too late to make any changes. After getting some tests to run and tweaks to try, I actually went into the lab and did them! For one I was curious to see if any of them could actually fix the error (they didn’t) and secondly, this designer is pretty hands on and likes to come out to Apps Lab quite often. I knew that if he came out to see the glitch on the bench and none of his changes were made he would get suspicious. Fortunately, or unfortunately, other obligations kept him away for the day and he never came out to see the problem until the end of the day.

After running the initial list of tests the designer gave me I had a flash of brilliance that really threw him for a loop. I took a series of scope shots at each of the four switching frequencies our part could run at and varied the value of R5 at each one. Now I had created a problem that went away as switching frequency increased and could explain why we hadn’t seen this issue before as the majority of our testing had taken place at high frequency up until this point! Bingo.

By the end of the day, the designer was pretty much stumped. He’d done an initial check of his schematics, couldn’t spot an obviously fault he made, but thought it was a mistake somewhere in the core of the modulator. He told me that at this point he essentially resigned himself to hoping the new version of the chip came out okay and whatever changes he made would happen to fix this (remember it’s too late to make changes now as the part’s being fabricated).

Right afterwards I called him into the lab saying I’d found something interesting and he should come take a look. When I showed him the circuit on back of the board he didn’t get it at first. He asked why all this crap was added and what did it fix? I couldn’t hold back anymore and broke out in a smile and said that I just wanted to mess with him. Slowly realization dawned on him and he started laughing as did my boss and a few other guys in the lab who were in on the joke.

In the end the designer took it really well and thought it was pretty funny. He told my boss to give me more work as clearly I didn’t have enough to do since I could pull these elaborate pranks but mostly he just laughed. I now owe him a round or two the next time a bunch of us go out after work but that’s a price I’m more than willing to pay all things considered. In the end I caused him just enough trouble so he started to sweat but not enough to take him away from any real tasks he had to get done. A well executed prank overall in my opinion. Surely, there’s no way this will every come back to haunt me right?

## Jim Williams, AN13, & Op Amp Wizardry

Not too long ago I was reading through one of Jim Williams’ famous App Notes, AN13, High Speed Comparator Techniques. It’s an older App Note that was published back in 1985 and I didn’t really have a specific reason for reading it other than thinking it looked interesting and I wanted to learn more about comparators. For a comprehensive overview of AN13 I recommend reading Dr. Lundberg’s (aka Dr. Analog) three part summary over on his blog Reading Jim Williams.

The first section of AN13 is extremely informative and makes the app note well worth the read in my opinion. Entitled “The Rouges Gallery of High Speed Comparator Problems” this portion of the app note highlights common pitfalls of comparator circuits including bypassing, ground planes, probe compensation, and much more. As useful as The Rouges Gallery is what intrigues me the most in AN13 doesn’t actually have anything to do with comparators and is found in the first circuit of the Applications Section. The overall circuit is a Voltage to Frequency Converter shown in Figure 16 of AN13 and reproduced below with the part that fascinates me most boxed in red.

What Jim Williams has done is replace the input stage of A1, the LT318A, with a pair of 2N4393 JFETs. These JFETs drive the output stage of A1 via the two Comp pins of the amplifier. A1’s true inputs are shutdown by shorting them directly to the -15V supply leaving the rest of the amplifier free to serve Williams’ needs for this particular application. According to page 8 of the app note this trick was done “for low bias, high-speed operation.”  Now I don’t have a whole lot of experience using op amps with Comp pins to begin with let alone understand their internal architecture enough to hack them like Jim did. As far as I knew something like this wasn’t even possible and it definitely wasn’t brought up in any of the classes I took in school! Needless to say, upon seeing it done here in AN13 I was a little stunned.

After my initial shock I decided to look at the LT318A a little more closely to try to see how Jim Williams had pulled off this neat little trick. Linear Tech is usually pretty good about providing schematics  of their op amps with a description in their datasheets and I was hoping this was the case with the 318. As it turns out, the LT318A datasheet is a bit sparse compared to other datasheets from Linear but fortunately for me it does contain a schematic of the part. Unfortunately for me, it doesn’t appear to be a simplified version and there isn’t a functional description. Looking at the schematic in detail I could tell this wasn’t the basic op-amp architecture I was used to dealing with but I decided to dive in anyways. I’ve copied the LT318A schematic here and marked it up into functional blocks as best as I’m able to but if anyone out there has more info on this op amp or sees somewhere that I went wrong please let me know.

From studying the datasheet schematic of the LT318A I was able to understand more of how Jim’s op amp hack works. Connecting the amps inputs on pins 2 and 3 to the negative rail turns off the differential amplifier, the heart of which are the input transistors Q1-Q4 with Q13 and Q14 being the active loads. As a side note there may be some common-mode feedback on the diff pair but I’m not 100% sure. Thinking about what was said in the app note I would have to assume using two JFETs in place of the input circuit on the op amp would lower bias requirements and cutting out all those transistors speeds up operation of the overall application circuit.

The output from the input differential stage is then fed into what I assume to be a second gain stage  (not sure what Q21 does, this may be a weird folded cascode configuration too). From Figure 16 in AN13, you can see that Jim Williams has the JFET input transistors driving pins 1 and 5 on the LT318A. Sure enough these two pins correspond to the output of the diff pair on the amplifier and feed directly into the second gain stage. Following the gain stage comes what appears to be a Class AB output stage.

I enjoyed this little exercise of trying to understand some of Jim Williams’ techniques. While I may not have exactly figured out how the LT318A works I feel I did understand the high-level thought process behind this neat little trick. I also saw that my BJT design skills are a little rusty and that perhaps I should dust off Gray & Meyer or Sedra-Smith and brush up on the topic. Who knows, there could be a revisit to this post in the future…

Any neat op amp hacks of your own? See a mistake in my analysis of the LT318A? Let me know in the comments. Oh, and Happy New Year!